

Sun-Earth Connection;
The Earth's
Magnetosphere and the
Importance of Space
Weather

Presented by: Dr. Yaireska (Yari) Collado-Veg

NASA Goddard Space Flight Center Thanks to the CCMC/SWRC team

CCMC/SWRC

The Sun's Rainbow

CME propagation

CME propagation to the Earth takes typically 2-4 days.

Magnetic Field of the Earth

The Earth's magnetic field is similar to that of a bar magnet.

Earth's Magnetic Field

comet-shaped region called the magnetosphere. The magnetosphere and Earth's atmosphere protect us from the solar wind and other kinds of solar and cosmic radiation.

Spatial Scales

Magnetosphere for Southward and Northward IMF Orientation

Magnetic Reconnection

Interplanetary Field Northward

Magnetosphere: Northward IMF

X: Earth to Sun

Z: South to North

Red lines (closed): Magnetic field (MF) lines with both ends connected to the Earth lines (interest to

Blue lines (interplanetary): MF lines with both ends in the interplanetary space

Magnetosphere: **Southward IMF**

Red lines (closed): Magnetic field (MF) lines with both ends connected to the Ea Black lines (open): MF lines with only one end a the Earth

Blue lines (interplanetary): MF lines with both ends in the interplanetary space

Magnetosphere in Different Cut Planes

Space Weather Bootcamp 20 Magnetosphere:

NASA NSI

Quiet vs. Compressed

Inner Magnetosphere (up to ~ 10 RE)

Inner Magnetosphere Plasmas

- Plasmasphere
 - 1-10 eV ions
 - ionospheric origin
- Ring current
 - 1-400 keV ions
 - both ionospheric and solar wind origin
- Outer radiation belt
 - 0.4-10 MeV electrons
 - magnetospheric origin

Inner magnetosphere: Gigantic Particle accelerator

Magnetic Storms

- Dst measures ring current development
 - Storm sudden commencement (SSC), main phase, and recovery phase
 - Duration: days

- Most intense solar windmagnetosphere coupling
- Associated with solar coronal mass ejections (CME), coronal holes HSS
- IMF Bz southward, strong electric field in the tail
- Formation of ring current and other global effects

Substorms

- Instabilities that abruptly and explosively release solar wind energy stored within the Earth's magnetotail.
- manifested most visually by a characteristic global development of auroras
- Last ~ hours

Horne et al., 2007, Nature Physics

Ring Current: Quiet vs. Active

Space Weather Impacts

Space weather impacts (credit: L. Lanzerotti/Bell Labs)

Lagrange Point – L1

L1 (Solar Wind Monitor ACE/DSCOVR location): \sim 200 R_E sunward You can fit 1 Sun between the Earth and L1.

 $2 R_S$ (Solar diameter) $\sim 220 R_E$

iSWA Interactive Timeline - DSCOVR Solar Wind Bulk Speed

Solar Wind Parameters at DSCOVR

on 09/2017

Velocity

part/cm³

Density

Magnetic field B_x , B_v , B_z

X: Earth to Sun

Z: North to South

nT

Magnetopause Stand-off Distance

Degree of compression of MP due to dynamic pressure of solar wind

Space Weather Bootcamp 2018

HSS and radiation belt electron flux enhancement

30

20

-10

-20

06:00

12:00

18:00

13Sep

06:00

12:00

18:00

14Sep

06:00

Kp index

"planetarische Kennziffer" (= planetary index).

 Geomagnetic activity index - range from 0-9 disturbance levels of magnetic field on the ground – currents

Threshold Kp>=6

Energetic Proton Flux

 >10 MeV flux by GOES spacecraft

Threshold: 10 pfu

 >100 MeV flux by GOES spacecraft

Threshold: 1 pfu

Watch the video

iSWA Layout: 07/12/2012

http://goo.gl/V0JjxV

Magnetosphere Physics Research Kelvin-Helmholtz Instability

- Waves that occur between the velocity shear of two fluids.
- It creates vortices on the magnetopause, specially on the flanks.
- Predominantely at high solar wind velocities and northward IMF (positive Bz) component.
- Many scientific models have been created to study these two parameters: the flow velocity and the magnetic field.

Examples of Kelvin-Helmholtz Instability

Magnetosphere Physics Research

Collado-Vega, Y. M., et al., JGR, 2007 and 2013

Flux Transfer Events (FTEs)

Flux Transfer Events (FTE's) are magnetopause signatures that result from the passage of flux ropes produced by

MHD Simulations (19:45-19:48 UT)

Magnetopause Stand-off Position

From Collado-Vega, Y. M., et al., In progress

